学术报告

Ambrosetti-Prodi problems for Robin (p,q)-equations

Title: Ambrosetti-Prodi problems for Robin (p,q)-equations

报告人:Vicentiu Radulescu
 Institute of Mathematics of the Romanian Academy, Bucharest and University of Craiova, Romania; AGH University of Krakow, Poland

Abstract:      I shall report on some results in a recent joint paper with Nikolaos Papageorgiou (National Technical University, Athens) and Jian Zhang (Hunan University of Technology and Business). 

The classical Ambrosetti-Prodi problem considers perturbations of the linear Dirichlet Laplace operator by a nonlinear reaction whose derivative jumps over the principal eigenvalue of the operator. 

In this talk, we develop a related analysis for parametric problems driven by the nonlinear Robin (p,q)-Laplace operator. Under hypotheses that cover both the (p-1)-linear and the (p-1)-superlinear case, we prove an optimal existence and  multiplicity property of solutions, as well as a non-existence result.

报告时间:2024年4月9日上午10:30-11:30

报告地点:教二楼627

报告人简介:勒杜列斯库,罗马尼亚科学院院士,巴黎第六大学(皮埃尔和玛丽居里大学)博士毕业。现任巴黎第六大学雅戈路易·里翁实验室教授兼博士导师,“西米翁·斯托伊洛夫”数学研究所教授研究员,克拉约瓦大学数学系正教授,阿卜杜阿齐兹国王大学杰出客座教授,卢布尔雅那大学数学研究所研究员。长期从事椭圆方程的退化和奇异现象的研究,拓扑和变分方法在微分方程中的应用,分歧理论在物理化学生物学领域的应用,以及微分算子的谱分析的相关研究,并在核心刊物发表论文三百余篇,曾获西米翁·斯托伊洛夫数学奖,罗马尼亚研究会颁发的卓越研究奖,克拉约瓦大学杰出特邀教授的称号,担任多家业内核心期刊编辑,荣获数学分析与应用杂志最佳总编辑的称号,在国际微分方程领域享有盛誉。


9d4616a2f4459ff57c50a0052fd82b0_副本.jpg